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Abstract

This article studies a dynamic project-selection game between a Prin-

cipal and an Agent with conflicting interests. Only the Agent knows what

projects are feasible. In each period before a project is selected, the Prin-

cipal imposes a restriction set. The Agent can select any feasible project

within this set, thereby ending the game. The Agent can also stay silent,

in which case the game will proceed to the next period. Importantly, the

Principal cannot commit to her future restriction sets. I show that when

the Agent is sufficiently patient, the Principal fully delegates to the Agent

in the unique equilibrium.
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1 Introduction

Consider the following incentive problem: a Principal (she) and an Agent (he)

would like to agree on a project but only the Agent knows which projects are

available. This kind of “project-choice” problem is ubiquitous: it manifests

in the relationship between a university and a department when determining

whom to hire or between a firm’s division and its headquarters when considering

a potential investment. The Agent in these examples is better informed about

the availability of each project than the Principal, but their preferences may not

align. The Principal then has to decide to what degree she should delegate the

choice to the Agent. Full delegation always results in the selection of a project

whenever one is feasible but results in the Agent also choosing his favorite project.

By contrast, restricting the Agent to some subset of projects may tilt the Agent

towards projects preferred by the Principal but also increases the chance that

no project is selected, resulting in the status quo outcome.

In their seminal work, Armstrong and Vickers (2010) study this project-

choice problem as a one-shot interaction: a Principal commits to a “restriction”

wherein the Agent can propose a project only in a given set. Such a proposal is

then selected. If the Agent has no project to propose in that restriction, both

parties obtain the status quo. An important idea that emerges from this analysis

is that to counteract the Agent’s bias, the Principal may exclude projects that

reflect Pareto gains relative to the status quo. Partial delegation thus emerges

as an optimal solution.

This article revisits this setting but with dynamic considerations in mind.

Suppose that the Agent does not recommend a project in the Principal’s re-
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striction. The Principal may then infer that the projects in her restriction are

infeasible. She may wish to give the Agent another chance by adjusting the re-

striction. Anticipating this response, the Agent may then hold back on proposing

projects. How well can the Principal do in this setting?

The main result of this article answers this question. Informally stated, the

answer is as follows:

Theorem. If the Agent is patient, the unique equilibrium outcome

involves the Principal fully delegating to the Agent.

The key idea is that if the Principal does not fully delegate to the Agent from

the start, the Agent has an incentive to hold back on proposing projects in the

restricted set so as to convince the Principal that such projects are infeasible.

At some point, the Principal capitulates, letting the Agent choose. If the Agent

is sufficiently patient, he will wait until that happens. The Principal is then

trapped and would have been better off by capitulating at the outset.

This strategic logic is reminiscent of the reputational arguments that feature

in Kreps and Wilson (1982) and Milgrom and Roberts (1982) or the Coase Con-

jecture (Gul, Sonnenschein, and Wilson, 1986). I highlight some important dis-

tinctions. Relative to reputation models, all players in my setting are strategic;

more critically, I use a distinct argument to show the uniqueness of equilibrium

as my model has an infinite horizon. Relative to the Coase Conjecture, types

in my model are not ordered, and hence there is no analog to single crossing or

the skimming property being satisfied here.1 Second, the actions in this model

1Indeed, in a different setting, Ali, Kartik, and Kleiner (2023) show that failures of stan-
dard single crossing may lead to equilibria that fail the skimming property and result in the
commitment payoff being attained.
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are discrete—i.e., to approve or reject a project—yet the aforementioned out-

come emerges across all equilibria. By contrast, in seller-buyer bargaining with

discrete prices, non-Coasian equilibria are possible.2

Existing articles rationalize delegation by highlighting the benefits to the

Principal. Aghion and Tirole (1997) show delegation encourages the Agent to

take initiative, whereas Dessein (2002) show delegating to an informed Agent

is better for the Principal than communicating with the Agent. This article

complements the existing work by identifying a new and distinct force: the

Principal is forced to fully delegate project choice to the Agent because she is

uncertain about what the Agent can do and she cannot commit in advance to

her future restrictions.

The rest of the article is organized as follows. Section 2 introduces the setup.

Section 3 presents the main result of this article (i.e., full discretion is inevitable

in equilibrium) and compares the equilibrium outcome to relevant commitment

benchmarks. Section 4 discusses related literature. All proofs are in the appen-

dices.

2 Model

A Principal (she) and an Agent (he) jointly choose a project. The set of potential

projects is denoted by N ≡ {1, . . . , n}, and the set of all non-empty subsets of

N is denoted by N . If project p is selected, then the Principal’s payoff is πp and

the Agent’s payoff is αp; if no project is selected, then each player obtains 0. I

2Von der Fehr and Kühn (1995) discusses that, when the buyer is sufficiently patient, there
exists a stationary equilibrium for each price p smaller than the buyer’s lowest value, wherein
the good is sold immediately at price p. Additionally, there are trigger-strategy equilibria.
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consider the generic case in which the Agent has strict preference over the set

of projects, and I order projects so that αp is strictly increasing in p. I further

assume that for each p, πp and αp are in (0, 1). In my setting these are without

loss of generality, as the Principal would never permit projects in which she

obtains a negative payoff and the Agent would never choose projects where he

obtains a negative payoff.

The Principal and the Agent both know πp and αp for each potential project

p.3 The informational friction is that the Principal does not know which projects

are feasible for the Agent; this is private information possessed by the Agent.

The set of feasible projects, S ⊆ N , is drawn according to the prior, µ0 ∈ ∆(N ).

Because N excludes the empty set, this presumes that there is always at least

one project that is feasible. For expositional convenience, I further assume that

µ0 has positive probability on any singleton: for every p, µ0({p}) > 0. Note that

this assumption is milder than a full-support assumption.4 I refer to S as the

Agent’s type. Given a set of feasible projects, S, maxS (resp. minS) denotes

the feasible project that has the highest (resp. lowest) label.

I model a dynamic delegation game. The Agent’s type, S, is drawn from the

prior distribution, µ0, before the start of the game and remains fixed throughout

the game. At every period t = 0, 1, . . . , until a project is selected:

1. The Principal proposes permission set At ⊆ N .

3I will later discuss that this assumption is without loss. The main result continues to hold
if, as in Armstrong and Vickers (2010), the Principal only knows the payoff of the project
selected by the Agent.

4In the Supplementary Appendix, I demonstrate that without this assumption, numerous
other equilibrium outcomes exist. However, the main result remains robust because these
alternative equilibrium outcomes are fragile, even to slight uncertainty about project feasibility.
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2. The Agent chooses from set (At∩S)∪{0}.5 Here, action 0 represents that

the Agent stays silent.

• If the Agent chooses project p in At ∩ S, the game ends with project

p selected. I refer to this case as reaching an agreement on project

p.

• If the Agent chooses 0, the game continues to period t+ 1.

In this game a history is a sequence of permission sets. A strategy for the

Principal is a function that assigns to every history a probability distribution over

2N , interpreted as the (possibly random) permission set the Principal proposes

given that the Agent has chosen 0 in all past periods. A strategy for the Agent is

a function that—for each history, each type S, and each current permission set

A—specifies the probability the Agent chooses each action in set (A ∩ S) ∪ {0}.

Both players are discounted expected-utility maximizers, with discount factors

of δP , δA ∈ (0, 1), respectively. I study perfect Bayesian equilibria of this game:

players are sequentially rational and beliefs follow Bayes’ rule whenever possible.

3 Why Full Discretion Is Inevitable

In the first subsection, I present my main result: the dynamic game has only

one equilibrium outcome, which involves the Principal fully delegating project

choices to the Agent and them reaching an agreement immediately. I compare

this outcome to commitment benchmarks in the second subsection.

5I implicitly assume the Agent cannot choose non-feasible or non-permitted projects. The
former is without loss in contexts where non-feasible projects incur losses to the Agent.
Whether my main result remains robust when allowing for the latter is an open question.
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Main Result

In this section, I show that equilibrium forces impel the Principal to effectively

give the Agent full discretion and the Agent to make no compromises. To for-

malize this idea, I define the following:

Definition 1. The Principal uses a full discretion strategy (henceforth FD) if

she proposes permission set N at every history. The Agent uses a no compro-

mise strategy (henceforth NC) if at every history, the agent of type S chooses

maxS whenever it is in the permission set, and chooses 0 otherwise.

Using these definitions, I state my main result. Let δ̄ ≡ maxp<n
αp

αp+1
.

Theorem 1. If the Agent is sufficiently patient—, δA > δ̄, then the unique

equilibrium outcome involves full discretion and no compromise. In other words,

immediate full discretion is inevitable.

The key intuition is as follows: If the Principal does not capitulate at the

outset, she cannot capitulate in the second period. Otherwise, the Agent, being

patient, will not compromise at all, expecting to obtain his preferred project

shortly. Similarly, if the Principal does not capitulate in period t, she cannot

capitulate in period t+ 1. Thus, under a hypothetical equilibrium in which the

Principal does not capitulate at the outset, the game will continue to the next

period with positive probability. Consequently, it is possible that an agreement

is not reached even after a sufficiently long delay. During such a long delay,

after observing the Agent choosing 0 repeatedly, the Principal eventually realizes

that either there is no feasible project in her permission sets or the Agent is

uncompromising. Hence, she is unlikely to reach an agreement with the Agent
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under her equilibrium permission sets. The Principal is better off if she deviates

to permit all projects. Therefore, if the Agent is sufficiently patient, the Principal

must immediately capitulate.

I conclude this subsection by providing three comments about Theorem 1.

First, note that Theorem 1 only requires the Agent to be patient. This does not

imply that the theorem relies on the Agent’s discount factor approaching one

while keeping the Principal’s discount factor fixed. In fact, the theorem remains

valid even if both the Principal and the Agent have the same discount factor

(δP = δA = δ > δ̄). It also holds true when both the Principal and the Agent

are very patient but have different discount factors.6

Secondly, Theorem 1 does not rely on the Principal knowing the charac-

teristics or payoffs of all potential projects. Theorem 1 remains valid if, as

in Armstrong and Vickers (2010), the Principal only knows the payoff vector

of the project selected by the Agent. To accommodate this possibility, let

C ≡ {(π1, α1), . . . , (πn, αn)} denote the set of possible payoff vectors. Now sup-

pose the payoff vector of each potential project is specified by a mapping between

N and C, and any bijection between N and C can be this mapping with positive

probability.7 The Agent privately observes the realized payoff mapping. The

Principal does not know the realized payoff mapping, hence she can only specify

a permission set as a subset of C. The project chosen by the Agent must have

a payoff vector within the Principal’s permission set, reflecting the idea that the

Principal can verify the characteristics of the project selected by the Agent. In

6For example, let’s assume that each period lasts for a duration of ∆, and the Principal
and the Agent have discount rates of rP and rA, respectively. Therefore, δP = e−rP∆ and
δA = e−rA∆. If ∆ is sufficiently small and δA > δ̄, Theorem 1 remains valid.

7Note that in this new setting, the payoff vector of project p is not necessarily (πp, αp); it
can be any element in C.
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this new setting, the same analysis holds and Theorem 1 continues to be valid.

Lastly, Theorem 1 remains valid even if the Principal commits to giving the

Agent only one chance with any project. Formally, in period t, at any history

{A0, · · · , At−1}, the permission set At proposed by the Principal cannot intersect

any previous permission set. In this new setting, Theorem 1 remains valid, and

the same analysis applies. Intuitively, if the Agent’s preferred project is not in

the current permission set, it can still be included in the next period’s permission

set. Hence, the Agent still has incentives to hold back on proposing projects,

and the Principal faces the same problem as before.

Commitment Benchmarks

Now that we understand that full discretion is inevitable in equilibria of the dy-

namic game, let us compare this payoff to those of relevant commitment bench-

marks.

The first commitment benchmark is the one-shot game studied by Armstrong

and Vickers (2010). In this one-shot game, the Principal commits to a permission

set within which the Agent can propose a feasible project. Such a proposal is

then selected. If the Agent has no feasible project to propose in that set, both

parties obtain the status quo. I refer to this setting as the static commitment

setting. In this static commitment setting, the Principal can always achieve the

same payoff as in equilibrium by permitting all projects. The Principal cannot

do strictly better in two extreme cases. The first case is when the Principal and

the Agent have the same preference order over the set of projects. The second

case is when there is common knowledge that the Agent has only one feasible
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project—µ0 only puts positive probability on singletons. However, as long as we

are sufficiently far from these extreme cases, the Principal can do strictly better

than under equilibrium. To formalize this idea, I define the following:

Definition 2. Preferences are non-congruent if the worst project for the Prin-

cipal does not coincide with that of the Agent: 1 /∈ argminp πp.

As long as preferences are non-congruent and the prior puts sufficiently small

probability on singletons, the Principal can achieve a strictly higher payoff than

under equilibrium:

Theorem 2. The Principal can achieve a strictly higher payoff in the static

commitment setting than in equilibrium if preferences are non-congruent and the

prior has full support and puts sufficiently small probability on singletons.

Relative to the static commitment setting, a more natural commitment bench-

mark in this dynamic game is to allow the Principal to commit to any strategy.

Clearly, any static commitment payoff is achievable by committing to the same

permission set in each period. If the Principal is arbitrarily patient, she can

achieve a payoff arbitrarily close to the first best payoff : the payoff the Prin-

cipal will receive if she perfectly observes the Agent’s type,

V ≡
∑
S

µ0(S)max
p∈S

πp.

Theorem 3. By committing to a strategy of the dynamic game, the Principal

can achieve a payoff arbitrarily close to the first best payoff if she is sufficiently

patient. In other words, for any ε > 0 and δA ∈ (0, 1), there exists δ ∈ (0, 1)

such that the Principal can achieve a payoff above V − ε if δP > δ.
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4 Related Literature

My model builds on project-selection models studied by Armstrong and Vickers

(2010) and Nocke and Whinston (2013). In their models, the Principal interacts

with the Agent in a one-shot manner, which automatically grants the Principal

commitment power. In my model, however, the Principal cannot commit in

advance to future permission sets. I find that when the Principal cannot commit,

she is forced to fully delegate project choice to the Agent under all generic prior

distributions and regardless of how misaligned their preferences are. In their

models, the Principal does not give the Agent full discretion except in non-

generic cases.

My work is far from the first to rationalize delegation. Aghion and Tirole

(1997) show that superiors in organizations will delegate authority to subordi-

nates to encourage initiatives from subordinates. Dessein (2002) shows a Prin-

cipal will prefer delegating control to an informed Agent rather than commu-

nicating with that Agent as long as their incentives are not too misaligned. I

identify a new and distinct force that pushes towards delegation: the Principal

delegates project choice to the Agent when she is uncertain what the Agent can

do and cannot commit in advance to her future restrictions. This force drives full

delegation to be the unique equilibrium outcome regardless of how misaligned

the Agent’s and Principal’s incentives are.

My result relates to the classic Coase conjecture Coase (1972) in the bargain-

ing literature and to the reputational arguments featured in Kreps and Wilson

(1982) and Milgrom and Roberts (1982). Essentially, my result can be viewed as

a Coase conjecture or a reputational result in the delegated project choice set-
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ting. Interestingly, even though my model does not have any behavioral types,

the project-selection framework allows the Agent to build a reputation for being

uncompromising.

My problem is categorized as a problem with limited commitment. In the

mechanism design literature, Doval and Skreta (2022) study dynamic mechanism-

selection games and assume that the designer can commit only to short-term

mechanisms. They develop a revelation principle in this setting. To the best of

my knowledge, there are no other articles in the delegation literature that study

delegation with limited commitment. The only exception is the recent article by

Mallick and Teoman (2022). In their model, in each period, the Agent moves

first to propose a project to the Principal and the Principal then either accepts

or rejects the Agent’s proposal. They find that under some conditions, there

exists an equilibrium under which the Principal attains the commitment payoff.
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Appendix

To prove Theorem 1, I first observe that if the Principal capitulates too quickly,

the Agent will not compromise at all. This observation is formalized in Lemma 1:

Lemma 1. Let the Agent be sufficiently patient (δA > δ̄). Under any equilibrium,

for each Agent type S,

(i) if maxS is permitted in the current period, type S will choose project

maxS with probability one;

(ii) if maxS is not permitted in the current period but permitted in the next

period for sure, type S will choose 0 with probability one.

The lemmas used in the proof of Theorem 1 will be proved following this

proof. Lemma 1 has an important implication: If the Principal does not end

the game in the first period by fully delegating to the Agent, the game will keep

proceeding to the next period with positive probability. This is established in

Lemma 2:

Lemma 2. Let the Agent be sufficiently patient (δA > δ̄). Under any equilibrium,

whenever the game does not end in the first period, the game will continue to the

next period with positive probability in each subsequent period at every equilibrium

path history.

Now we are ready to prove Theorem 1. It is straightforward to verify that

(FD, NC) (coupled with the Principal’s belief derived from Bayes’ rule from the

prior and the Agent’s strategy) constitutes an equilibrium: because the Agent

does not compromise at all under strategy NC, the best the Principal can do is
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to propose N . When the Principal chooses the FD strategy, by Lemma 1, the

Agent will necessarily behave according to the NC strategy.

To show the uniqueness of the equilibrium outcome, suppose to the contrary

that there exists an equilibrium with an equilibrium outcome different from that

of equilibrium (FD, NC). I first show that under this equilibrium, there exists an

equilibrium path with an arbitrarily long delay in agreement. Under this equi-

librium, if the Principal permits all projects in the first period, she will reach

an agreement with the Agent immediately (by Part (i) of Lemma 1) and the

equilibrium outcome will be the same as under equilibrium (FD, NC). Hence,

for the equilibrium outcome to be different, it must be that some project p̃o is

not permitted in the first period with positive probability. In other words, the

Principal proposes some permission set Ã0 with positive probability in period 0

and p̃o /∈ Ã0. After permission set Ã0 is proposed, the game will continue to the

next period with positive probability because at least singleton type {p̃o} will

respond to Ã0 by choosing 0 with probability one. Thus, the period 1 history—

{Ã0}—is on equilibrium path. By Lemma 2, at history {Ã0}, the game continues

to the next period with positive probability. In other words, the Principal pro-

poses some permission set Ã1 with positive probability at this history and the

Agent responds to Ã1 by choosing 0 with positive probability. Thus, history

{Ã0, Ã1} is also on equilibrium path. Hence, inductively, there exists sequence

{Ãk}k=∞
k=0 such that for each t, the Principal proposes permission set Ãt with

positive probability at equilibrium path history {Ã0, . . . , Ãt−1} and the game

continues to period t+1 with positive probability after Ãt is proposed. In other

words, sequence {Ãk}k=∞
k=0 is the equilibrium path with an arbitrarily long delay

in agreement. Note that for this to happen, there must exist an Agent type S̃
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who responds to each permission set Ãt by choosing 0 with positive probability.

By Part (i) of Lemma 1, max S̃ /∈ Ãt for each t. Hence, max S̃ /∈ ∪k=∞
k=0 Ãk, which

implies ∪k=∞
k=0 Ãk ̸= N .

Along the equilibrium path {Ãk}k=∞
k=0 , the Principal eventually realizes that

the probability of reaching an agreement with the Agent is arbitrarily low.

Let µt denote the Principal’s belief at history {Ã0, . . . , Ãt−1}; let at(S) denote

the probability of type S choosing 0 when facing permission set Ãt at history

{Ã0, . . . , Ãt−1}. If S ∩ Ãt = ∅, at(S) = 1; otherwise, type S chooses 0 with

probability at(S) and chooses project max(S ∩ Ãt) with the remaining proba-

bility. Note that it is strictly suboptimal for the Agent to choose any feasible

and permitted project other than project max(S ∩ Ãt). Hence, when the Princi-

pal proposes permission set Ãt at history {Ã0, . . . , Ãt−1}, an agreement will be

reached with probability ∑
S∈N

µt(S)(1− at(S)).

This agreement probability must vanish (limt→∞
∑

S∈N µt(S)(1 − at(S)) = 0)

because:

Lemma 3. For each Agent type S, either limt→∞ µt(S) = 0 or limt→∞ at(S) = 1.

Because this agreement probability vanishes, the Principal’s equilibrium pay-

off also vanishes. Let Ṽt denote the Principal’s equilibrium expected discounted

payoff at history {Ã0, . . . , Ãt−1}. I show that limt→∞ Ṽt = 0: Because the Princi-

pal proposes permission set Ãt with positive probability at history {Ã0, . . . , Ãt−1},
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equilibrium payoff Ṽt can be written as

Ṽt =
∑
S∈N

µt(S)(1− at(S))πmaxS∩Ãt
+

[
1−

∑
S∈N

µt(S)(1− at(S))

]
δP Ṽt+1.

8

The bracketed term represents the probability that no agreement is reached and

the game continues to the next period, which is bounded by one. Thus,

Ṽt ≤
∑
S∈N

µt(S)(1− at(S))︸ ︷︷ ︸
the agreement probability

πmaxS∩Ãt
+ δP Ṽt+1.

Because the agreement probability vanishes, for any ε > 0, there exists T such

that ∑
S∈N

µt(S)(1− at(S)) < ε for all t > T .

Hence,

Ṽt ≤ ε·max
p

πp+δP Ṽt+1 for all t > T , which implies Ṽt ≤
εmaxp πp

1− δP
for all t > T .

Therefore, Ṽt < minp πp for sufficiently large t. However, by permitting all

projects at history {Ã0, . . . , Ãt−1}, the Principal obtains a payoff that is at least

minp πp. This contradicts the sequential rationality of the Principal and com-

pletes the proof.

Proof of Lemma 1

Proof. Part (i) is straightforward because type S can do no better than project

8To accommodate the case S ∩ Ãt = ∅, let πmax ∅ denote zero.
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maxS.

For Part (ii), because the Agent is sufficiently patient (δA > δ̄), waiting one

period to obtain project maxS is strictly better than accepting any other feasible

project in the current period.

Proof of Lemma 2

Proof. Suppose to the contrary that there exists an equilibrium under which the

game does not end in the first period with positive probability but ends with

probability one at some equilibrium path history {Ã0, . . . , Ãt}. Because this

history is an equilibrium path history, there exists some Agent type S̃ responding

to all past permission sets Ã0, . . . , Ãt by choosing 0 with positive probability.

According to Part (i) of Lemma 1, max S̃ /∈ ∪k=t
k=0Ãk, which implies ∪k=t

k=0Ãk ̸= N .

I claim that for the game to end for sure at this history, the Principal must

capitulate. In other words, the Principal must permit all projects in the set

N \ (∪k=t
k=0Ãk) with probability one at this history. Suppose, alternatively, that

some project po ∈ N \ (∪k=t
k=0Ãk) is not permitted with positive probability at

this history. In other words, the Principal proposes some permission set Ât+1

with positive probability at this history and po /∈ Ât+1. Singleton type {po}

must be in the support of the Principal’s belief at this history because singleton

type {po} has been assigned positive probability by the prior and will choose 0

with probability one when faced with all past permission sets Ã0, . . . , Ãt. When

the Principal proposes Ât+1 at this history, singleton type {po} will also choose

0 with probability one. Therefore, the game continues to the next period with

positive probability, contradicting the assumption that the game will end with

probability one at this history.
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I then show that the Agent will not compromise at all when the Principal

proposes permission set Ãt in the previous period. In other words, each type

S in the support of the Principal’s belief at history {Ã0, . . . , Ãt−1} will choose

project maxS with probability one if it is in permission set Ãt; otherwise, each

type will choose 0 with probability one.9 To see this, note that if maxS ∈ Ãt,

by Part (i) of Lemma 1, type S will choose project maxS with probability one.

Suppose maxS /∈ Ãt. Because type S is in the support of the Principal’s belief

at history {Ã0, . . . , Ãt−1}, type S must have chosen 0 with positive probability

when facing all past permission sets Ã0, . . . , Ãt−1. Hence, by Part (i) of Lemma 1,

maxS /∈ ∪k=t−1
k=0 Ãk. Thus, maxS /∈ ∪k=t

k=0Ãk, which implies project maxS will

be permitted with probability one in the next period. Hence, by Part (ii) of

Lemma 1, type S will choose 0 with probability one and project maxS will be

selected in the next period.

Therefore, by proposing Ãt at history {Ã0, . . . , Ãt−1}, for each type S in the

support of the Principal’s belief, the Principal receives project maxS imme-

diately if maxS ∈ Ãt; otherwise, the Principal receives project maxS after a

one-period delay if maxS /∈ Ãt. This one-period delay necessarily happens with

positive probability because each singleton type {po} with po /∈ ∪k=t
k=0Ãk will be in

the support of the Principal’s belief and satisfies max{po} /∈ Ãt. The Principal

will be strictly better off by permitting all projects at this history because she

continues to receive the same project from each Agent type in support of her

belief but avoids this one-period delay. In other words, proposing Ãt at this his-

tory is strictly suboptimal, violating the sequential rationality of the Principal.

9Because t − 1 appears, I need t > 0 to avoid a negative t − 1. To accommodate the case
t = 0, in this proof, let {Ã0, . . . , Ã−1} denote the period 0 history and let ∪k=−1

k=0 Ãk denote the
empty set.
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This completes the proof.

Proof of Lemma 3 The argument is similar to the merging argument in

Sorin (1999). Before presenting the formal proof, let me provide some intu-

ition. I showed that ∪∞
k=0Ãk ̸= N . Hence, there exists a singleton type {po}

with po /∈ ∪∞
k=0Ãk. In each period t at history {Ã0, . . . , Ãt−1}, the singleton

type {po} necessarily responds to permission set Ãt by choosing 0 with proba-

bility one. In other words, at({po}) = 1 for each t. Now consider any type S

with limt→∞ at(S) < 1. Along the equilibrium path {Ãk}∞k=0, type S eventually

chooses 0 significantly less often than the singleton type {po} in each period.

Hence, after observing the Agent choosing 0 for a sufficient number of periods,

the Principal eventually becomes quite certain that the Agent cannot be of type

S. Thus, limt→∞ µt(S) = 0. The formal proof proceeds as follows:

Proof. Recall that µt is the Principal’s belief at history {Ã0, . . . , Ãt−1} and at(S)

is the probability of type S choosing 0 when facing permission set Ãt at history

{Ã0, . . . , Ãt−1}. Hence, both µt and at are deterministic functions.

Take any type S such that limt→∞ at(S) = 1 is not true. There exists a sub-

sequence {atk(S)} converging to a limit other than one—limk→∞ atk(S) = a∞ <

1. Hence, I can find T that

atk(S) ≤
1 + a∞

2
for all tk ≥ T. (1)

Let Qt denote the probability that the Agent chooses 0 facing all permission
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sets Ã0, . . . , Ãt−1 in past periods. By Bayes’ rule:

µt(S) =
µ0(S)Π

j=t−1
j=0 aj(S)

Qt

.

Because ∪k=∞
k=0 Ãk ̸= N , there exists singleton type {po} with po /∈ ∪k=∞

k=0 Ãk. By

Bayes’ rule:

µt({po}) =
µ0({po})Πj=t−1

j=0 aj({po})
Qt

=
µ0({po})

Qt

.

The second equality is because for all j, aj({po}) = 1 because po /∈ Ãj.

Consider the following likelihood ratio:

µt(S)

µt({po})
=

µ0(S)Π
j=t−1
j=0 aj(S)

µ0({po})
≤

µ0(S)

µ0({po})

[1 + a∞

2

]|{tk|T≤tk<t}|
,

where the inequality is by Equation (1) and aj(S) ≤ 1.

Notice that
1 + a∞

2
< 1. Hence, limt→∞

µt(S)

µt({po})
= 0, which implies limt→∞ µt(S) =

0. This completes the proof.

Proof of Theorem 2

Proof. In this static commitment setting, if the Principal permits all projects,

she will receive the same payoff as in equilibrium. If the Principal permits all but

her least preferred project, she will obtain a strictly higher payoff: Denote her

least preferred project by p. When the Principal permits all projects, each type

S is going to choose project maxS. By removing project p from the permission

set, the Principal is going to obtain the same project if p is not the Agent’s

favorite feasible project; the Principal is going to make a loss of πp if the Agent
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is of singleton type {p}; the Principal’s payoff will increase by πmaxS\{p} − πp if

the Agent is of type S other than singleton type {p} and that p is exactly the

Agent’s favorite feasible project (maxS = p). Hence, removing project p will

strictly increase the Principal’s payoff if the total loss is smaller than the total

increase in her payoff:

µ0({p})πp <
∑

S:S ̸={p},maxS=p

µ0(S)(πmax(S\{p}) − πp).

Because preferences are non-congruent, p ̸= 1. Agent type {1, p} will be in set

{S : S ̸= {p},maxS = p}, and π1 − πp > 0 because p is the Principal’s least

preferred project and preferences are non-congruent. In addition, µ0({1, p}) > 0

because the prior has full support. Hence, the right-hand side of the above

inequality is strictly positive. As long as the prior put sufficiently less probability

on singleton {p}, the above inequality will hold, and the Principal can achieve a

strictly higher payoff in the static commitment setting than in equilibrium.

Proof of Theorem 3

Proof. Let T be a sufficiently large number such that no Agent type is willing

to wait T periods to obtain a better project.

T ≡ min{t|αnδ
t
A < α1}.

The Principal commits to the following Slowly Compromising Strategy: Or-

der the set of the Principal’s payoff from potential projects ({πp|p = 1, . . . , n})

in a decreasing manner π(1) > · · · > π(k) > · · · > π(K). In the first T pe-
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riods, only permits projects with a payoff to the Principal at least π(1). For

each k = 1, . . . , K − 1, in the k-th T periods (from period (k − 1)T to period

kT −1), permits projects with payoffs to the Principal at least π(k). From period

(K − 1)T on, permits all projects. For each Agent type S, if the Principal’s fa-

vorite project in set S gives her a payoff π(k) (maxp∈S πp = π(k)), then under the

Slowly Compromising Strategy, type S has no feasible project permitted before

period (k − 1)T . In period (k − 1)T , all permitted projects in set S give the

Principal payoff π(k); and by definition of T , the Agent has no incentive to wait

for a better project. Hence, the Principal will receive payoff δ
(k−1)T
P π(k) if the

Agent has type S. Because T is independent of δP , this payoff will converge to

π(k) = maxp∈S πp as δP goes to one . As a result, the Principal’s payoff under

the Slowly Compromising Strategy converges to the First Best Payoff as δP goes

to one.
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